
Recurrent Convolutional Neural Networks for Text Classification

Siwei Lai, Liheng Xu, Kang Liu, Jun Zhao
National Laboratory of Pattern Recognition (NLPR)

Institute of Automation, Chinese Academy of Sciences, China
{swlai, lhxu, kliu, jzhao}@nlpr.ia.ac.cn

Abstract

Text classification is a foundational task in many NLP
applications. Traditional text classifiers often rely on
many human-designed features, such as dictionaries,
knowledge bases and special tree kernels. In contrast
to traditional methods, we introduce a recurrent con-
volutional neural network for text classification with-
out human-designed features. In our model, we apply
a recurrent structure to capture contextual information
as far as possible when learning word representations,
which may introduce considerably less noise compared
to traditional window-based neural networks. We also
employ a max-pooling layer that automatically judges
which words play key roles in text classification to cap-
ture the key components in texts. We conduct experi-
ments on four commonly used datasets. The experimen-
tal results show that the proposed method outperforms
the state-of-the-art methods on several datasets, partic-
ularly on document-level datasets.

Introduction
Text classification is an essential component in many ap-
plications, such as web searching, information filtering, and
sentiment analysis (Aggarwal and Zhai 2012). Therefore, it
has attracted considerable attention from many researchers.

A key problem in text classification is feature repre-
sentation, which is commonly based on the bag-of-words
(BoW) model, where unigrams, bigrams, n-grams or some
exquisitely designed patterns are typically extracted as fea-
tures. Furthermore, several feature selection methods, such
as frequency, MI (Cover and Thomas 2012), pLSA (Cai and
Hofmann 2003), LDA (Hingmire et al. 2013), are applied
to select more discriminative features. Nevertheless, tradi-
tional feature representation methods often ignore the con-
textual information or word order in texts and remain un-
satisfactory for capturing the semantics of the words. For
example, in the sentence “A sunset stroll along the South
Bank affords an array of stunning vantage points.”, when
we analyze the word “Bank” (unigram), we may not know
whether it means a financial institution or the land beside
a river. In addition, the phrase “South Bank” (bigram), par-
ticularly considering the two uppercase letters, may mislead

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

people who are not particularly knowledgeable about Lon-
don to take it as a financial institution. After we obtain the
greater context “stroll along the South Bank” (5-gram), we
can easily distinguish the meaning. Although high-order n-
grams and more complex features (such as tree kernels (Post
and Bergsma 2013)) are designed to capture more contextual
information and word orders, they still have the data sparsity
problem, which heavily affects the classification accuracy.

Recently, the rapid development of pre-trained word em-
bedding and deep neural networks has brought new inspira-
tion to various NLP tasks. Word embedding is a distributed
representation of words and greatly alleviates the data spar-
sity problem (Bengio et al. 2003). Mikolov, Yih, and Zweig
(2013) shows that pre-trained word embeddings can cap-
ture meaningful syntactic and semantic regularities. With the
help of word embedding, some composition-based methods
are proposed to capture the semantic representation of texts.

Socher et al. (2011a; 2011b; 2013) proposed the Recur-
sive Neural Network (RecursiveNN) that has been proven
to be efficient in terms of constructing sentence representa-
tions. However, the RecursiveNN captures the semantics of
a sentence via a tree structure. Its performance heavily de-
pends on the performance of the textual tree construction.
Moreover, constructing such a textual tree exhibits a time
complexity of at least O(n2), where n is the length of the
text. This would be too time-consuming when the model
meets a long sentence or a document. Furthermore, the re-
lationship between two sentences can hardly be represented
by a tree structure. Therefore, RecursiveNN is unsuitable for
modeling long sentences or documents.

Another model, which only exhibits a time complexity
O(n), is the Recurrent Neural Network (RecurrentNN).
This model analyzes a text word by word and stores the se-
mantics of all the previous text in a fixed-sized hidden layer
(Elman 1990). The advantage of RecurrentNN is the ability
to better capture the contextual information. This could be
beneficial to capture semantics of long texts. However, the
RecurrentNN is a biased model, where later words are more
dominant than earlier words. Thus, it could reduce the effec-
tiveness when it is used to capture the semantics of a whole
document, because key components could appear anywhere
in a document rather than at the end.

To tackle the bias problem, the Convolutional Neural
Network (CNN), an unbiased model is introduced to NLP

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

2267

tasks, which can fairly determine discriminative phrases in
a text with a max-pooling layer. Thus, the CNN may better
capture the semantic of texts compared to recursive or re-
current neural networks. The time complexity of the CNN
is also O(n). However, previous studies on CNNs tends to
use simple convolutional kernels such as a fixed window
(Collobert et al. 2011; Kalchbrenner and Blunsom 2013).
When using such kernels, it is difficult to determine the
window size: small window sizes may result in the loss of
some critical information, whereas large windows result in
an enormous parameter space (which could be difficult to
train). Therefore, it raises a question: can we learn more con-
textual information than conventional window-based neural
networks and represent the semantic of texts more precisely
for text classification.

To address the limitation of the above models, we pro-
pose a Recurrent Convolutional Neural Network (RCNN)
and apply it to the task of text classification. First, we ap-
ply a bi-directional recurrent structure, which may introduce
considerably less noise compared to a traditional window-
based neural network, to capture the contextual information
to the greatest extent possible when learning word repre-
sentations. Moreover, the model can reserve a larger range
of the word ordering when learning representations of texts.
Second, we employ a max-pooling layer that automatically
judges which features play key roles in text classification, to
capture the key component in the texts. By combining the re-
current structure and max-pooling layer, our model utilizes
the advantage of both recurrent neural models and convo-
lutional neural models. Furthermore, our model exhibits a
time complexity of O(n), which is linearly correlated with
the length of the text length.

We compare our model with previous state-of-the-art ap-
proaches using four different types of tasks in English and
Chinese. The classification taxonomy contains topic clas-
sification, sentiment classification and writing style classi-
fication. The experiments demonstrate that our model out-
performs previous state-of-the-art approaches in three of the
four commonly used datasets.

Related Work
Text Classification
Traditional text classification works mainly focus on three
topics: feature engineering, feature selection and using dif-
ferent types of machine learning algorithms. For feature en-
gineering, the most widely used feature is the bag-of-words
feature. In addition, some more complex features have been
designed, such as part-of-speech tags, noun phrases (Lewis
1992) and tree kernels (Post and Bergsma 2013). Feature
selection aims at deleting noisy features and improving the
classification performance. The most common feature selec-
tion method is removing the stop words (e.g., “the”). Ad-
vanced approaches use information gain, mutual informa-
tion (Cover and Thomas 2012), or L1 regularization (Ng
2004) to select useful features. Machine learning algorithms
often use classifiers such as logistic regression (LR), naive
Bayes (NB), and support vector machine (SVM). However,
these methods have the data sparsity problem.

Deep neural networks
Recently, deep neural networks (Hinton and Salakhutdinov
2006) and representation learning (Bengio, Courville, and
Vincent 2013) have led to new ideas for solving the data
sparsity problem, and many neural models for learning word
representations have been proposed (Bengio et al. 2003;
Mnih and Hinton 2007; Mikolov 2012; Collobert et al. 2011;
Huang et al. 2012; Mikolov et al. 2013). The neural repre-
sentation of a word is called word embedding and is a real-
valued vector. The word embedding enables us to measure
word relatedness by simply using the distance between two
embedding vectors.

With the pre-trained word embeddings, neural networks
demonstrate their great performance in many NLP tasks.
Socher et al. (2011b) use semi-supervised recursive autoen-
coders to predict the sentiment of a sentence. Socher et al.
(2011a) proposed a method for paraphrase detection also
with recurrent neural network. Socher et al. (2013) intro-
duced recursive neural tensor network to analyse sentiment
of phrases and sentences. Mikolov (2012) uses recurrent
neural network to build language models. Kalchbrenner and
Blunsom (2013) proposed a novel recurrent network for di-
alogue act classification. Collobert et al. (2011) introduce
convolutional neural network for semantic role labeling.

Model
We propose a deep neural model to capture the semantics
of the text. Figure 1 shows the network structure of our
model. The input of the network is a document D, which
is a sequence of words w1, w2 . . . wn. The output of the net-
work contains class elements. We use p(k|D, θ) to denote
the probability of the document being class k, where θ is the
parameters in the network.

Word Representation Learning
We combine a word and its context to present a word. The
contexts help us to obtain a more precise word meaning.
In our model, we use a recurrent structure, which is a bi-
directional recurrent neural network, to capture the contexts.

We define cl(wi) as the left context of word wi and
cr(wi) as the right context of word wi. Both cl(wi) and
cr(wi) are dense vectors with |c| real value elements. The
left-side context cl(wi) of wordwi is calculated using Equa-
tion (1), where e(wi−1) is the word embedding of word
wi−1, which is a dense vector with |e| real value elements.
cl(wi−1) is the left-side context of the previous word wi−1.
The left-side context for the first word in any document uses
the same shared parameters cl(w1). W (l) is a matrix that
transforms the hidden layer (context) into the next hidden
layer. W (sl) is a matrix that is used to combine the semantic
of the current word with the next word’s left context. f is a
non-linear activation function. The right-side context cr(wi)
is calculated in a similar manner, as shown in Equation (2).
The right-side contexts of the last word in a document share
the parameters cr(wn).

cl(wi) = f(W (l)cl(wi−1) +W (sl)e(wi−1)) (1)

cr(wi) = f(W (r)cr(wi+1) +W (sr)e(wi+1)) (2)

2268

...

...

x3

x4

x5

x6

x7

cl(w3)

cl(w4)

cl(w5)

cl(w6)

cl(w7)

cr(w3)

cr(w4)

cr(w5)

cr(w6)

cr(w7)

y
(2)
3

y
(2)
4

y
(2)
5

y
(2)
6

y
(2)
7

y(3)

recurrent structure (convolutional layer) max-pooling layer output layer

left context right contextword embedding

stroll

along

the

South

Bank

Figure 1: The structure of the recurrent convolutional neural network. This figure is a partial example of the sentence “A
sunset stroll along the South Bank affords an array of stunning vantage points”, and the subscript denotes the position of the
corresponding word in the original sentence.

As shown in Equations (1) and (2), the context vector
captures the semantics of all left- and right-side contexts.
For example, in Figure 1, cl(w7) encodes the semantics of
the left-side context “stroll along the South” along with all
previous texts in the sentence, and cr(w7) encodes the se-
mantics of the right-side context “affords an . . . ”. Then, we
define the representation of word wi in Equation (3), which
is the concatenation of the left-side context vector cl(wi),
the word embedding e(wi) and the right-side context vector
cr(wi). In this manner, using this contextual information,
our model may be better able to disambiguate the meaning
of the word wi compared to conventional neural models that
only use a fixed window (i.e., they only use partial informa-
tion about texts).

xi = [cl(wi); e(wi); cr(wi)] (3)
The recurrent structure can obtain all cl in a forward scan

of the text and cr in a backward scan of the text. The time
complexity isO(n). After we obtain the representation xi of
the word wi, we apply a linear transformation together with
the tanh activation function to xi and send the result to the
next layer.

y
(2)
i = tanh

(
W (2)xi + b(2)

)
(4)

y
(2)
i is a latent semantic vector, in which each semantic

factor will be analyzed to determine the most useful factor
for representing the text.

Text Representation Learning
The convolutional neural network in our model is designed
to represent the text. From the perspective of convolutional
neural networks, the recurrent structure we previously men-
tioned is the convolutional layer.

When all of the representations of words are calculated,
we apply a max-pooling layer.

y(3) =
n

max
i=1

y
(2)
i (5)

The max function is an element-wise function. The k-th el-
ement of y(3) is the maximum in the k-th elements of y(2)

i .
The pooling layer converts texts with various lengths into

a fixed-length vector. With the pooling layer, we can capture
the information throughout the entire text. There are other
types of pooling layers, such as average pooling layers (Col-
lobert et al. 2011). We do not use average pooling here be-
cause only a few words and their combination are useful for
capturing the meaning of the document. The max-pooling
layer attempts to find the most important latent semantic fac-
tors in the document. The pooling layer utilizes the output of
the recurrent structure as the input. The time complexity of
the pooling layer is O(n). The overall model is a cascade of
the recurrent structure and a max-pooling layer, therefore,
the time complexity of our model is still O(n).

The last part of our model is an output layer. Similar to
traditional neural networks, it is defined as

y(4) =W (4)y(3) + b(4) (6)

Finally, the softmax function is applied to y(4). It can con-
vert the output numbers into probabilities.

pi =
exp

(
y
(4)
i

)
∑n

k=1 exp
(
y
(4)
k

) (7)

Training
Training Network parameters We define all of the pa-
rameters to be trained as θ.

θ = {E, b(2), b(4), cl(w1), cr(wn),W
(2),

W (4),W (l),W (r),W (sl),W (sr)}
(8)

Specifically, the parameters are word embeddings E ∈
R|e|×|V |, the bias vectors b(2) ∈ RH , b(4) ∈ RO, the initial
contexts cl(w1), cr(wn) ∈ R|c| and the transformation ma-
trixes W (2) ∈ RH×(|e|+2|c|),W (4) ∈ RO×H ,W (l),W (r) ∈

2269

R|c|×|c|,W (sl),W (sr) ∈ R|e|×|c| , where |V | is the number
of words in the vocabulary, H is the hidden layer size, and
O is the number of document types.

The training target of the network is used to maximize the
log-likelihood with respect to θ:

θ 7→
∑
D∈D

log p(classD|D, θ) (9)

where D is the training document set and classD is the cor-
rect class of document D.

We use stochastic gradient descent (Bottou 1991) to opti-
mize the training target. In each step, we randomly select an
example (D, classD) and make a gradient step.

θ ← θ + α
∂ log p(classD|D, θ)

∂θ
(10)

where α is the learning rate.
We use one trick that is widely used when training neu-

ral networks with stochastic gradient descent in the train-
ing phase. We initialize all of the parameters in the neural
network from a uniform distribution. The magnitude of the
maximum or minimum equals the square root of the “fan-
in”(Plaut and Hinton 1987). The number is the network node
of the previous layer in our model. The learning rate for that
layer is divided by “fan-in”.

Pre-training Word Embedding Word embedding is a
distributed representation of a word. Distributed representa-
tion is suitable for the input of neural networks. Traditional
representations, such as one-hot representation, will lead to
the curse of dimensionality (Bengio et al. 2003). Recent re-
search (Hinton and Salakhutdinov 2006; Erhan et al. 2010)
shows that neural networks can converge to a better local
minima with a suitable unsupervised pre-training procedure.

In this work, we use the Skip-gram model to pre-train the
word embedding. this model is the state-of-the-art in many
NLP tasks (Baroni, Dinu, and Kruszewski 2014). The Skip-
gram model trains the embeddings of words w1, w2 . . . wT

by maximizing the average log probability

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt) (11)

p(wb|wa) =
exp

(
e′(wb)

Te(wa)
)∑|V |

k=1 exp
(
e′(wk)

T
e(wa)

) (12)

where |V | is the vocabulary of the unlabeled text. e′(wi)
is another embedding for wi. We use the embedding e be-
cause some speed-up approaches (e.g., hierarchical softmax
(Morin and Bengio 2005)) will be used here, and e′ is not
calculated in practice.

Experiments
Datasets
To demonstrate the effectiveness of the proposed method,
we perform the experiments using the following four
datasets: 20Newsgroups, Fudan Set, ACL Anthology Net-
work, and Sentiment Treebank. Table 1 provides detailed
information about each dataset.

Dataset C Train/Dev/Test Len Lang
20News 4 7520/836/5563 429 EN
Fudan 20 8823/981/9832 2981 CH
ACL 5 146257/28565/28157 25 EN
SST 5 8544/1101/2210 19 EN

Table 1: A summary of the datasets, including the number of
classes, the number of train/dev/test set entries, the average
text length and the language of the dataset.

20Newsgroups1 This dataset contains messages from
twenty newsgroups. We use the bydate version and select
four major categories (comp, politics, rec, and religion) fol-
lowed by Hingmire et al. (2013).

Fudan set2 The Fudan University document classification
set is a Chinese document classification set that consists of
20 classes, including art, education, and energy.

ACL Anthology Network3 This dataset contains scien-
tific documents published by the ACL and by related organi-
zations. It is annotated by Post and Bergsma (2013) with the
five most common native languages of the authors: English,
Japanese, German, Chinese, and French.

Stanford Sentiment Treebank4 The dataset contains
movie reviews parsed and labeled by Socher et al. (2013).
The labels are Very Negative, Negative, Neutral, Positive,
and Very Positive.

Experiment Settings
We preprocess the dataset as follows. For English docu-
ments, we use the Stanford Tokenizer5 to obtain the tokens.
For Chinese documents, we use ICTCLAS6 to segment the
words. We do not remove any stop words or symbols in the
texts. All four datasets have been previously separated into
training and testing sets. The ACL and SST datasets have
a pre-defined training, development and testing separation.
For the other two datasets, we split 10% of the training set
into a development set and keep the remaining 90% as the
real training set. The evaluation metric of the 20Newsgroups
is the Macro-F1 measure followed by the state-of-the-art
work. The other three datasets use accuracy as the metric.

The hyper-parameter settings of the neural networks may
depend on the dataset being used. We choose one set of com-
monly used hyper-parameters following previous studies
(Collobert et al. 2011; Turian, Ratinov, and Bengio 2010).
Moreover, we set the learning rate of the stochastic gradi-
ent descent α as 0.01, the hidden layer size as H = 100,
the vector size of the word embedding as |e| = 50 and the
size of the context vector as |c| = 50. We train word em-

1qwone.com/˜jason/20Newsgroups/
2www.datatang.com/data/44139 and 43543
3old-site.clsp.jhu.edu/˜sbergsma/Stylo/
4nlp.stanford.edu/sentiment/
5nlp.stanford.edu/software/tokenizer.shtml
6ictclas.nlpir.org

2270

Model 20News Fudan ACL SST
BoW + LR 92.81 92.08 46.67 40.86
Bigram + LR 93.12 92.97 47.00 36.24
BoW + SVM 92.43 93.02 45.24 40.70
Bigram + SVM 92.32 93.03 46.14 36.61
Average Embedding 89.39 86.89 41.32 32.70

ClassifyLDA-EM (Hingmire et al. 2013) 93.60 - - -
Labeled-LDA (Li, Sun, and Zhang 2008) - 90.80 - -
CFG (Post and Bergsma 2013) - - 39.20 -
C&J (Post and Bergsma 2013) - - 49.20 -
RecursiveNN (Socher et al. 2011b) - - - 43.20
RNTN (Socher et al. 2013) - - - 45.70
Paragraph-Vector (Le and Mikolov 2014) - - - 48.70
CNN 94.79 94.04 47.47 46.35
RCNN 96.49 95.20 49.19 47.21

Table 2: Test set results for the datasets. The top, middle, and bottom parts are the baselines, the state-of-the-art results and the
results of our model, respectively. The state-of-the-art results are reported by the corresponding essays.

beddings using the default parameter in word2vec7 with the
Skip-gram algorithm. We use Wikipedia dumps in both En-
glish and Chinese to train the word embedding.

Comparison of Methods

We compare our method with widely used text classification
methods and the state-of-the-art approaches for each dataset.

Bag of Words/Bigrams + LR/SVM Wang and Manning
(2012) proposed several strong baselines for text classifi-
cation. These baselines mainly use machine learning algo-
rithms with unigram and bigrams as features. We use logis-
tic regression (LR) and SVM8, respectively. The weight of
each feature is the term frequency.

Average Embedding + LR This baseline uses the
weighted average of the word embeddings and subsequently
applies a softmax layer. The weight for each word is its tf-
idf value. Huang et al. (2012) also used this strategy as the
global context in their task. Klementiev, Titov, and Bhattarai
(2012) used this in crosslingual document classification.

LDA LDA-based approaches achieve good performance
in terms of capturing the semantics of texts in several clas-
sification tasks. We select two methods as the methods for
comparison: ClassifyLDA-EM (Hingmire et al. 2013) and
Labeled-LDA (Li, Sun, and Zhang 2008).

Tree Kernels Post and Bergsma (2013) used various tree
kernels as features. It is the state-of-the-art work in the ACL
native language classification task. We list two major meth-
ods for comparison: the context-free grammar (CFG) pro-
duced by the Berkeley parser (Petrov et al. 2006) and the re-
ranking feature set of Charniak and Johnson (2005) (C&J).

7code.google.com/p/word2vec
8www.csie.ntu.edu.tw/˜cjlin/liblinear

RecursiveNN We select two recursive-based methods for
comparison with the proposed approach: the Recursive Neu-
ral Network (RecursiveNN) (Socher et al. 2011a) and its
improved version, the Recursive Neural Tensor Networks
(RNTNs) (Socher et al. 2013).

CNN We also select a convolutional neural network (Col-
lobert et al. 2011) for comparison. Its convolution kernel
simply concatenates the word embeddings in a pre-defined
window. Formally,
xi = [e(wi−bwin/2c); . . . ; e(wi); . . . ; e(wi+bwin/2c)].

Results and Discussion
The experimental results are shown in Table 2.

• When we compare neural network approaches (Recur-
siveNN, CNN, and RCNN) to the widely used traditional
methods (e.g., BoW+LR), the experimental results show
that the neural network approaches outperform the tradi-
tional methods for all four datasets. It proves that neu-
ral network based approach can effective compose the se-
mantic representation of texts. Neural networks can cap-
ture more contextual information of features compared
with traditional methods based on BoW model, and may
suffer from the data sparsity problem less.

• When comparing CNNs and RCNNs to RecursiveNNs us-
ing the SST dataset, we can see that the convolution-based
approaches achieve better results. This illustrates that the
convolution-based framework is more suitable for con-
structing the semantic representation of texts compared
with previous neural networks. We believe the main rea-
son is that CNN can select more discriminative features
through the max-pooling layer and capture contextual in-
formation through convolutional layer. By contrast, Re-
cursiveNN can only capture contextual information us-
ing semantic composition under the constructed textual
tree, which heavily depends on the performance of tree
construction. Moreover, compared to the recursive-based

2271

approaches, which require O(n2) time to construct the
representations of sentences, our model exhibits a lower
time complexity of O(n). In practice, the training time of
the RNTN as reported in Socher et al. (2013) is approxi-
mately 3-5 hours. Training the RCNN on the SST dataset
only takes several minutes using a single-thread machine.

• In all datasets expect ACL and SST dataset, RCNN out-
performs the state-of-the-art methods. In the ACL dataset,
RCNN has a competitive result with the best baseline. We
reduce the error rate by 33% for the 20News dataset and
by 19% for the Fudan set with the best baselines. The re-
sults prove the effectiveness of the proposed method.

• We compare our RCNN to well-designed feature sets in
the ACL dataset. The experimental results show that the
RCNN outperforms the CFG feature set and obtains a re-
sult that is competitive with the C&J feature set. We be-
lieve that the RCNN can capture long-distance patterns,
which are also introduced by tree kernels. Despite the
competitive results, the RCNN does not require hand-
crafted feature sets, which means that it might be useful
in low-resource languages.

• We also compare the RCNN to the CNN and find that
the RCNN outperforms the CNN in all cases. We believe
that the reason is the recurrent structure in the RCNN cap-
tures contextual information better than window-based
structure in CNNs. This results demonstrate the effective-
ness of the proposed method. To illustrate this point more
clearly, we propose a detailed analysis in the next subsec-
tion.

Contextual Information In this subsection, we investi-
gate the ability of the recurrent structure in our model for
capturing contextual information in further detail. The dif-
ference between CNNs and RCNNs is that they use different
structure for capturing contextual information. CNNs use a
fixed window of words as contextual information, whereas
RCNNs use the recurrent structure to capture a wide range
of contextual information. The performance of a CNN is in-
fluenced by the window size. A small window may result
in a loss of some long-distance patterns, whereas large win-
dows will lead to data sparsity. Furthermore, a large number
of parameters are more difficult to train.

We consider all odd window sizes from 1 to 19 to train and
test the CNN model. For example, when the window size is
one, the CNN only uses the word embedding [e(wi)] to rep-
resent the word. When the window size is three, the CNN
uses [e(wi−1); e(wi); e(wi+1)] to represent word wi. The
test scores for these various window sizes are shown in Fig-
ure 2. Because of space limitations, we only show the classi-
fication results for the 20Newsgroups dataset. In this figure,
we can observe that the RCNN outperforms the CNN for all
window sizes. It illustrate that the RCNN could capture con-
textual information with a recurrent structure that does not
rely on the window size. The RCNN outperforms window-
based CNNs because the recurrent structure can preserve
longer contextual information and introduces less noise.

Learned Keywords To investigate how our model con-
structs the representations of texts, we list the most impor-

93.26

94.28
94.69

94.75

94.76

94.79

94.76
94.50

94.45

94.42

93.6

96.49

93

94

95

96

97

0 2 4 6 8 10 12 14 16 18 20

M
ac

ro
-F

1

Context window size
CNN ClassifyLDA-EM RCNN

Figure 2: Macro-F1 curve for how context window size in-
fluences the performance of the 20Newsgroups classifica-
tion

RCNN

P
well worth the; a wonderful movie; even stinging at;
and invigorating film; and ingenious entertainment;
and enjoy .; ’s sweetest movie

N
A dreadful live-action; Extremely boring .; is n’t a;
’s painful .; Extremely dumb .; an awfully derivative;
’s weaker than; incredibly dull .; very bad sign;

RNTN

P an amazing performance; most visually stunning;
wonderful all-ages triumph; a wonderful movie

N for worst movie; A lousy movie; a complete failure;
most painfully marginal; very bad sign

Table 3: Comparison of positive and negative features ex-
tracted by the RCNN and the RNTN

tant words in the test set in Table 3. The most important
words are the information most frequently selected in the
max-pooling layer. Because the word representation in our
model is a word together with its context, the context may
contain the entire text. We only present the center word
and its neighboring trigram. For comparison, we also list
the most positive/negative trigram phrases extracted by the
RNTN (Socher et al. 2013).

In contrast to the most positive and most negative phrases
in RNTN, our model does not rely on a syntactic parser,
therefore, the presented n-grams are not typically “phrases”.
The results demonstrate that the most important words for
positive sentiment are words such as “worth”, “sweetest”,
and “wonderful”, and those for negative sentiment are words
such as “awfully”, “bad”, and “boring”.

Conclusion
We introduced recurrent convolutional neural networks to
text classification. Our model captures contextual informa-
tion with the recurrent structure and constructs the represen-
tation of text using a convolutional neural network. The ex-
periment demonstrates that our model outperforms CNN and
RecursiveNN using four different text classification datasets.

2272

Acknowledgments
The authors would like to thank the anonymous review-
ers for the constructive comments. This work was spon-
sored by the National Basic Research Program of China (No.
2014CB340503) and the National Natural Science Founda-
tion of China (No. 61202329, 61272332).

References
Aggarwal, C. C., and Zhai, C. 2012. A survey of text classi-
fication algorithms. In Mining text data. Springer. 163–222.
Baroni, M.; Dinu, G.; and Kruszewski, G. 2014. Don’t
count, predict! a systematic comparison of context-counting
vs. context-predicting semantic vectors. In ACL, 238–247.
Bengio, Y.; Ducharme, R.; Vincent, P.; and Jauvin, C. 2003.
A Neural Probabilistic Language Model. JMLR 3:1137–
1155.
Bengio, Y.; Courville, A.; and Vincent, P. 2013. Representa-
tion learning: A review and new perspectives. IEEE TPAMI
35(8):1798–1828.
Bottou, L. 1991. Stochastic gradient learning in neural net-
works. In Proceedings of Neuro-Nımes, volume 91.
Cai, L., and Hofmann, T. 2003. Text categorization by
boosting automatically extracted concepts. In SIGIR, 182–
189.
Charniak, E., and Johnson, M. 2005. Coarse-to-fine n-best
parsing and maxent discriminative reranking. In ACL, 173–
180.
Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.;
Kavukcuoglu, K.; and Kuksa, P. 2011. Natural language
processing (almost) from scratch. JMLR 12:2493–2537.
Cover, T. M., and Thomas, J. A. 2012. Elements of informa-
tion theory. John Wiley & Sons.
Elman, J. L. 1990. Finding structure in time. Cognitive
science 14(2):179–211.
Erhan, D.; Bengio, Y.; Courville, A.; Manzagol, P.-A.; Vin-
cent, P.; and Bengio, S. 2010. Why does unsupervised pre-
training help deep learning? JMLR 11:625–660.
Hingmire, S.; Chougule, S.; Palshikar, G. K.; and
Chakraborti, S. 2013. Document classification by topic la-
beling. In SIGIR, 877–880.
Hinton, G. E., and Salakhutdinov, R. R. 2006. Reducing
the dimensionality of data with neural networks. Science
313(5786):504–507.
Huang, E. H.; Socher, R.; Manning, C. D.; and Ng, A. Y.
2012. Improving word representations via global context
and multiple word prototypes. In ACL, 873–882.
Kalchbrenner, N., and Blunsom, P. 2013. Recurrent convo-
lutional neural networks for discourse compositionality. In
Workshop on CVSC, 119–126.
Klementiev, A.; Titov, I.; and Bhattarai, B. 2012. Inducing
crosslingual distributed representations of words. In Coling,
1459–1474.
Le, Q. V., and Mikolov, T. 2014. Distributed representations
of sentences and documents. In ICML.

Lewis, D. D. 1992. An evaluation of phrasal and clustered
representations on a text categorization task. In SIGIR, 37–
50.
Li, W.; Sun, L.; and Zhang, D. 2008. Text classification
based on labeled-lda model. Chinese Journal of Computers
31(4):620–627.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In NIPS, 3111–3119.
Mikolov, T.; Yih, W.-t.; and Zweig, G. 2013. Linguistic
regularities in continuous space word representations. In
NAACL-HLT, 746–751.
Mikolov, T. 2012. Statistical language models based on neu-
ral networks. Ph.D. Dissertation, Brno University of Tech-
nology.
Mnih, A., and Hinton, G. 2007. Three new graphical models
for statistical language modelling. In ICML, 641–648.
Morin, F., and Bengio, Y. 2005. Hierarchical probabilistic
neural network language model. In AISTATS, 246–252.
Ng, A. Y. 2004. Feature selection, l1 vs. l2 regularization,
and rotational invariance. In ICML, 78.
Petrov, S.; Barrett, L.; Thibaux, R.; and Klein, D. 2006.
Learning accurate, compact, and interpretable tree annota-
tion. In Coling-ACL, 433–440.
Plaut, D. C., and Hinton, G. E. 1987. Learning sets of fil-
ters using back-propagation. Computer Speech & Language
2(1):35–61.
Post, M., and Bergsma, S. 2013. Explicit and implicit syn-
tactic features for text classification. In ACL, 866–872.
Socher, R.; Huang, E. H.; Pennington, J.; Ng, A. Y.; and
Manning, C. D. 2011a. Dynamic pooling and unfolding
recursive autoencoders for paraphrase detection. In NIPS,
volume 24, 801–809.
Socher, R.; Pennington, J.; Huang, E. H.; Ng, A. Y.; and
Manning, C. D. 2011b. Semi-supervised recursive autoen-
coders for predicting sentiment distributions. In EMNLP,
151–161.
Socher, R.; Perelygin, A.; Wu, J. Y.; Chuang, J.; Manning,
C. D.; Ng, A. Y.; and Potts, C. 2013. Recursive deep models
for semantic compositionality over a sentiment treebank. In
EMNLP, 1631–1642.
Turian, J.; Ratinov, L.; and Bengio, Y. 2010. Word repre-
sentations: a simple and general method for semi-supervised
learning. In ACL, 384–394.
Wang, S., and Manning, C. D. 2012. Baselines and bigrams:
Simple, good sentiment and topic classification. In ACL, 90–
94.

2273

